jueves, 7 de mayo de 2015

CENTRO INSTANTÁNEO DE ROTACIÓN O POLO DE VELOCIDAD.

     El polo de velocidades se obtiene como la intersección de las normales a las trayectorias (o a las velocidad) de dos puntos cualesquiera de un sólido plano. Ocurre que en un movimiento infinitesimal, la posición del polo no varía, de tal suerte que ha de tener necesariamente velocidad nula: el polo es un punto (en el caso más general, el único) de velocidad nula del sólido plano. Además, dicho movimiento infinitesimal va a equivaler a un giro diferencial del sólido alrededor del CIR, por lo que el movimiento real de un sólido plano puede interpretarse como una secuencia de rotaciones infinitesimales en torno a las sucesivas posiciones del polo (cabe esperar que el polo, en el movimiento del sólido, cambie de posición).
        El polo podrá ser un punto impropio (en el infinito) cuando en el sólido haya dos puntos de velocidades paralelas; en caso contrario, será un punto de sólido móvil, aunque esté fuera de los límites físicos de dicho sólido (el sólido móvil define un plano, el plano móvil, al que pertenece él, su CIR).
         En su movimiento, el CIR describe dos trayectorias: la base (curva polar fija) y la ruleta (curva polar móvil); siendo la primera el lugar geométrico de los puntos del plano fijo que en algún instante han coincidido con el CIR del plano móvil, y la segunda el lugar geométrico de los puntos del plano móvil que en algún instante han sido CIR. EL movimiento de un sólido móvil plano queda totalmente definido mediante el movimiento de rodadura de la ruleta sobre la base, tal y como lo demostró CAUCHY en 1827.De ahí la importancia del CIR.
     Se cumple que la velocidad (modulo) de un punto del sólido móvil plano es:
 v= \omega r \,

           Para hallar el centro instantáneo de rotación del eslabón 2 con relación al eslabón fijo 4, bastará trazar por B y C sendas rectas perpendiculares a las velocidades en tales puntos y su intersección proporcionará el punto P24. El eslabón 2 es como si en la posición mostrada en la Fig. 3.4 estuviera girando alrededor del punto P24.



           Si por el punto C se llevan las velocidades VC y VB se tiene un triángulo CFE que es semejante al P24BC (por tener sus lados homólogos ortogonales) y, por lo tanto, se puede escribir que:
de donde resulta que las velocidades (de los puntos B y C, en este caso) son proporcionales a sus distancias respectivas al centro instantáneo de rotación (polo P24). De aquí se deduce que el eslabón 2 está rotando alrededor de P24 con velocidad angular
        El punto P24 centro instantáneo de rotación del eslabón 2 con relación al eslabón 4, tiene la misma velocidad por ambos eslabones y por lo tanto, por ser fijo el eslabón 4, resulta que el punto P24 no se mueve. Lo mismo ocurre respecto a coincidencia de velocidades con los restantes centros encontrados y siempre estos puntos representan la superposición de otros dos, uno de cada eslabón. Tales puntos tienen gran utilidad para la localización de velocidades de otros puntos, pero ha de tenerse en cuenta que tales polos de velocidades solo pueden emplearse en una concreta posición del mecanismo, ya que un instante después estos puntos pueden ser sustituidos por otros distintos, y de hecho generalmente lo son.

      Por último, resta encontrar el centro de rotación del eslabón 3 con relación al eslabón 1. Para determinarlo se supondrá realizada una inversión del mecanismo de la Fig. 3.4, admitiéndose que el eslabón 1 es fijo; esto es, los puntos A y B son las articulaciones unidas al bastidor del mecanismo. Si B y A fuesen fijos, los puntos C y D tendrían velocidades normales, respectivamente, a BC y AD, y sus rectas perpendiculares CB y AD se cortarían en el punto P31 que es el centro instantáneo de rotación buscado. El número de centros instantáneo existentes en un mecanismo con n barras o eslabones vendrá dado por la expresión

TEOREMA DE LOS TRES CENTROS O TEOREMA DE KENNEDY:

       El teorema de los tres centros (o de Kennedy) es útil para encontrar aquellos centros instantáneos de rotación relativos en un mecanismo, que no sean de obtención directa (obvios). Su enunciado es el siguiente:

"Si tenemos tres eslabones (sólidos rígidos) animados de movimiento relativo entre ellos (ya sea que estén o no conectados entre sí) los centros instantáneos de rotación relativos entre los tres eslabones han de estar alineados"

      Se puede demostrar este teorema por contradicción, como se muestra en la siguiente figura. Suponemos que uno de los eslabones es fijo (suelo). En ese caso, el centro instantáneo de rotación relativo entre los eslabones 2 y 3 no puede estar en el punto P de contacto entre dichos eslabones, pues dicho punto no tendría la misma velocidad como perteneciente al eslabón 2 (vP2), que la que tendría como perteneciente al eslabón 3 (vP3). Estas dos velocidades sólo pueden ser iguales en un punto Q que esté alineado con los centros instantáneos de rotación relativos de cada eslabón respecto del eslabón fijo. Ya que esta es la única forma de que las direcciones (y sentidos) de vQ2 y vQ3 coincidan.

    La posición de Q dependerá de las velocidades angulares de los eslabones 2 y 3 (tanto de su módulo, como de su sentido). En el ejemplo mostrado, es claro que w2 ha de ser mayor que w3

     Este teorema también puede demostrarse planteando el cálculo de la velocidad del punto Q (centro instantáneo de rotación relativo entre los eslabones 2 y 3) como perteneciente al sólido 2 y como perteneciente al sólido 3.




Esta última igualdad sólo es posible si los dos vectores de posición del punto Q (respecto a los centros de rotación O2 y O3) tienen la misma dirección. Y, por lo tanto, los tres centros instantáneos de rotación relativos (O2 , O3 y Q) han de estar alineados.

CIR REFERIDO AL MOVIMIENTO PLANO:

  •        El centro instantáneo de rotación, referido al movimiento plano de un cuerpo, se define como el punto del cuerpo o de su prolongación en el que la velocidad instantánea del cuerpo es nula. •Si el cuerpo realiza una rotación pura alrededor de un punto, dicho punto es el centro instantáneo de rotación. Si el cuerpo realiza un traslación pura el centro instantáneo de rotación se encuentra en el infinito en dirección normal a la velocidad de traslación. Si el cuerpo realiza un movimiento general el centro instantáneo de rotación se mueve respecto al cuerpo de un instante a otro (de ahí que se llame centro instantáneo de rotación). Su posición se puede conocer en cada instante por intersección de las direcciones perpendiculares a la velocidad de dos de sus puntos.

  1.   Tal como sugirió Reuleaux a mediados del siglo XIX, los eslabones se pueden considerar que en cada instante realizan un giro alrededor de un centro. Dicho centro se llama centro instantáneo de rotación o polo de velocidades. Cuando un eslabón está efectuando una traslación en un momento dado, su centro instantáneo de rotación se encuentra en el infinito y en una dirección perpendicular al movimiento del eslabón. Esto se denota fácilmente porque las velocidades de todos sus puntos son iguales y sus vectores paralelo
  2. Para localizar los CIR seguimos el siguiente método: 1) Hallar el número de centros (N = 4 (4 - 1)/2 = 6). 2) Determinar los inmediatos por simple inspección. 3) Localizar el resto mediante la ley de los tres centros. En la figura muestra un mecanismo de biela-manivela donde se han numerado los eslabones desde el 1 hasta el 4. Al disponer de 4 eslabones, el numero de centros a localizar es de N = 4 (4 - 1)/2 = 6. Con objeto de no omitir ninguno de los polos, se suele trazar un polígono auxiliar de n = 4 vértices (a la derecha de la figura) y se construyen con trazo lleno los centros inicialmente conocidos o inmediatos. Los polos conocidos son P12, P23 y P14 que se determinan de forma inmediata una vez construida la figura.
  3. Para calcular las velocidades por CIR seguiremos los pasos siguientes: 1. Identificar los eslabones a los que pertenecen: a) El punto de velocidad conocida. b) El punto de velocidad desconocida. c) El eslabón de referencia o barra fija. 2. Se hallan los tres CIR relativos correspondientes a las barras, que estarán en línea recta según nos indica el Teorema de Kennedy. 3. Se calcula la velocidad del CIR relativo de los dos eslabones no fijos, considerándolo como un punto perteneciente a la barra de velocidad conocida. 4. Se considera la velocidad hallada como la de un punto del eslabón cuya velocidad queremos hallar. Conociendo la velocidad de un punto del eslabón (CIR) y su centro de giro podemos encontrar la de cualquier otro punto del mismo. • Aplicación de los CIR a un mecanismo de cuatro barras. • Aplicación de los CIR a un mecanismo de biela - manivela.
  4. Para calcular las velocidades por CIR seguiremos los pasos siguientes: 
  • 1. Identificar los eslabones a los que pertenecen:
  •  a) El punto de velocidad conocida.
  •  b) El punto de velocidad desconocida.
  •  c) El eslabón de referencia o barra fija.
  •  2. Se hallan los tres CIR relativos correspondientes a las barras, que estarán en línea recta según nos indica el Teorema de Kennedy. 
  • 3. Se calcula la velocidad del CIR relativo de los dos eslabones no fijos, considerándolo como un punto perteneciente a la barra de velocidad conocida.
  •  4. Se considera la velocidad hallada como la de un punto del eslabón cuya velocidad queremos hallar. Conociendo la velocidad de un punto del eslabón (CIR) y su centro de giro podemos encontrar la de cualquier otro punto del mismo.

  •  • Aplicación de los CIR a un mecanismo de cuatro barras. 
  • • Aplicación de los CIR a un mecanismo de biela - manivela
curvas polares:
      
      Las coordenadas polares o sistemas polares son un sistema de coordenadas bidimensional en el cual cada punto del plano se determina por una distancia y un ángulo, amplia mente utilizados en física y trigonometría.
De manera más precisa, se toman: un punto O del plano, al que se le llama origen o polo, y una recta dirigida (o rayo, o segmento OL) que pasa por O, llamada eje polar (equivalente al eje x del sistema cartesiano), como sistema de referencia. Con este sistema de referencia y una unidad de medida métrica (para poder asignar distancias entre cada par de puntos del plano), todo punto P del plano corresponde a un par ordenado (r, θ) donde r es la distancia de P al origen y θ es el ángulo formado entre el eje polar y la recta dirigida OP que va de O a P. El valor θ crece en sentido antihorario y decrece en sentido horario. La distancia r (r ≥ 0) se conoce como la «coordenada radial» o «radio vector», mientras que el ángulo es la «coordenada angular» o «ángulo polar».
En el caso del origen, O, el valor de r es cero, pero el valor de θ es indefinido. En ocasiones se adopta la convención de representar el origen por (0,0º)